If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2-7b-6=0
a = 3; b = -7; c = -6;
Δ = b2-4ac
Δ = -72-4·3·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*3}=\frac{-4}{6} =-2/3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*3}=\frac{18}{6} =3 $
| 1/6p=8 | | 3/4n+7=19 | | 2/5f=10 | | 20+(8h)=60 | | 2x/3=22 | | 4x+5+3x=110 | | -64=-8(x-7) | | 17k+k-5k+k-8k=18 | | -8d+7=4d-5 | | -8n+3=5n-6 | | -8d7=4d-5 | | -6x-3+10x=-39 | | X-0.2x=4 | | 7w+8=7w-7 | | -6+12x=3(4x-2) | | x/1,1^2+2x(1,1)^3=1000 | | 6(h-933)=300 | | 2250-3000z=375-750z | | 11=j+82/22 | | v+53/23=5 | | k+60/17=6 | | (2y^2-4y+6)/2y= | | H(x)=(x-4)^2 | | 53=8+9x^2 | | 514-t=253 | | 15y+4=12y+1 | | 4d+8=6d-1 | | 15y+4=12y+12 | | 147/v=21 | | n+255/25=19 | | 6x-3+10x=-39 | | 16=h+94/11 |